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Abstract

For a two-dimensional piece-wise linear map exhibiting on-off intermittency, the scaling property

of fluctuation, i.e., the large deviation property is investigated. It is shown that there are three

phases of fluctuation and the q-weighted average of an observed quantity has singularities such as

jumps or a plateau due to transitions between the phases. At the onset of on-off intermittency, the

width of the plateau vanishes due to the disappearance of one of the three phases and the singularity

becomes weaker but more probable. The singularity at the onset of on-off intermittency is also

examined on the coupled logistic map.
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I. INTRODUCTION

On-off intermittency[1, 2] and riddled basins[3] appear in nonlinear dynamical systems

with invariant subspaces, where the dynamics restricted to the invariant subspace is chaotic.

Due to the chaotic property of the dynamics in the invariant subspace, on-off intermittency

and riddled basins possess considerable complexity despite its simple structure of the dy-

namics. In the present paper, we focus on on-off intermittency that has been investigated in

many respects not only in low-dimensional dynamical systems[4–8] but also in continuously

spatially extended systems[9].

For an understanding of complex behavior in nonlinear dynamical systems, the scaling

property of fluctuation, which is formulated as thermodynamic formalism, is useful[10, 11].

For example, the nonhyperbolicity of chaotic attractor due to homoclinic tangency is char-

acterized by the discontinuity in the q-weighted average of local expansion rate[12]. The

structure of riddled basin is characterized by a spectrum of multifractal[13]. On-off inter-

mittency is also characterized by its scaling property of fluctuation. The large deviation

property, one of the scaling property of fluctuation, of on-off intermittency is investigated

for the distance from the invariant subspace with a multiplicative noise model[5] and for the

portion of time spent in the laminar phase with a piecewise linear map[8]. It is demonstrated

that there appears a singularity in the q-weighted average of the observed quantity. The

common feature of the above two models is the existence of underlying random walks, which

is considered to be the origin of the observed singularity. This is suggested by the fact[14]

that inhomogeneous random walks generate singularities in their thermodynamic structure

functions. Our purpose in the present paper is clearly demonstrating singularities in the

fluctuation of on-off intermittency for piecewise linear maps by considering a set of observed

variables.

In Sec. II, we introduce two piecewise linear maps which exhibit on-off intermittency. In

Sec. III, we calculate the thermodynamic structure functions and show that there appear two

types of singularities. A summary and concluding remarks concerning the nonhyperbolicity

due to underlying random walks of on-off intermittency are given in Sec. IV.
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II. PIECEWISE LINEAR MODELS OF ON-OFF INTERMITTENCY

We consider two-dimensional piecewise linear maps of the form

xn+1 = F (xn), yn+1 = G(xn, yn), (1)

where G(x, 0) = 0 and thus y = 0 is the invariant subspace. Assume that the restricted

dynamics xn+1 = F (xn) to the invariant subspace is chaotic. If the transverse Lyapunov

exponent

lim
N→∞

(1/N)
N−1∑

n=0

ln |∂G(xn, 0)/∂y| (2)

along an orbit on the invariant subspace converges and is less than 0, then the invariant

subspace is transversally stable with respect to this orbit. If we have such an orbit with

negative transverse Lyapunov exponent and the orbit is associated with the natural invari-

ant measure of xn+1 = F (xn), then the invariant subspace contains an attractor in Milnor’s

sense[15]. On-off intermittency[1, 2, 6] is observed, if the following conditions are satisfied:

(a) the invariant subspace contains no attractor, (b) there are orbits on the invariant sub-

space having negative transverse Lyapunov exponents, and (c) there is a global mechanism

of reinjection. Note that the second condition enables the invariant subspace somewhat

“attracting”.

As a tractable model exhibiting on-off intermittency[7], we introduce the following sim-

plified two-dimensional piecewise linear map:

xn+1 = F (xn) =





xn/a if 0 ≤ xn ≤ a,

(1− xn)/(1− a) if a < xn ≤ 1,
(3)

yn+1 = G(xn, yn) =





yn/b if 0 ≤ xn ≤ a, 0 ≤ yn ≤ b,

byn if a < xn ≤ 1,

yn if 0 ≤ xn ≤ a, b < yn ≤ 1,

(4)

where 1/2 < a < 1 and 0 < b < 1 are constants. And we also consider another model[8] by

replacing the dynamics in y with

yn+1 = G(xn, yn) =





yn/b if 0 ≤ xn ≤ a, 0 ≤ yn ≤ b,

byn if a < xn ≤ 1, 0 ≤ yn ≤ b,

(1− yn)/(1− b) if b < yn ≤ 1,

(5)
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which is referred to as the model II while the first model is referred to as the model I in the

following.

The natural invariant measure for the asymmetric triangular map xn+1 = F (xn) of Eq. (3)

is the Lebesgue measure[16]. Since

∂G(x, 0)/∂y =





b−1 if 0 ≤ x ≤ a,

b if a < x ≤ 1,
(6)

if a > 1/2, the condition (a) is satisfied and a = a0 ≡ 1/2 + 0 is the onset point of on-off

intermittency. The condition (b) is also satisfied, since xn+1 = F (xn) has a set of initial

conditions x0 such that the orbit {xn} spends longer time in the interval [0, a] than in the

interval (a, 1]. The condition (c) is satisfied as well. Let us consider a partition of the phase

space [0, 1]× [0, 1] into rectangles

Rj ≡ [0, 1]× (bj+1, bj], j = 0, 1, 2, . . . . (7)

With this phase space partition, a symbolic dynamics can be considered, where the graphs

of possible symbol sequence have similar structures with random walks as shown in Fig. 1.

More precisely, the rectangle Rj ∩ Rα (α = 0, 1, j = 0, 1, 2, . . .), where R0 ≡ [0, a) × [0, 1]

and R1 ≡ [a, 1]× [0, 1], is linearly mapped to




R0 if α = j = 0,

Rj+2α−1 otherwise,
(8)

and 


∪∞k=0Rk if j = 0,

Rj+2α−1 otherwise,
(9)

in the models I and II, respectively.

III. LARGE DEVIATION PROPERTIES

In this section, we investigate large deviation properties[17] of on-off intermittency by

introducing a set of observed variables and generalize the result shown in the previous

paper[8], where only a certain variable is observed.

Let us consider a quantity u(X) defined at each phase space point X. Its finite time

average over n-steps is

un(X) ≡ (1/n)
n−1∑

k=0

u(T k(X)), (10)

4



where T k denotes k-th iterate of the map T . Then the large deviation property[10, 11] is

characterized by

〈δ(u− un(X))〉 ∼ exp(−nS(u)) (11)

for large n with the fluctuation spectrum S(u), where 〈G(X)〉 denotes the average with

respect to the natural invariant measure. Note that S(u) is a concave function taking its

minimum value 0 at u = 〈u(X)〉. The thermodynamic structure functions associated with

u(X) are introduced by

φ(q) ≡ lim
n→∞(1/n) ln〈enqun(X)〉 (12)

and

u(q) ≡ dφ(q)/dq = lim
n→∞〈un(X)enqun(X)〉/〈enqun(X)〉, (13)

where −∞ < q < ∞. The fluctuation spectrum S(u) is related to φ(q) with the Legendre

transformation

S(u) = max
q
{qu− φ(q)}. (14)

In the following, we consider

u(x, y) ≡





u0 if 0 ≤ x < a, b < y ≤ 1,

u+ if 0 ≤ x < a, 0 ≤ y ≤ b,

u− if a ≤ x ≤ 1,

(15)

for the model I and

u(x, y) ≡





u0 if b < y ≤ 1,

u+ if 0 ≤ x < a, 0 ≤ y ≤ b,

u− if a ≤ x ≤ 1, 0 ≤ y ≤ b,

(16)

for the model II, where u0, u+, and u− are constants. Note that a set of observed variables

u can be considered by taking several values of u0, u+, and u− and that the transverse

expansion rate u(x, y) = ln |∂G(x, y)/∂y| can be considered with an appropriate choice of

the values of u0, u+, and u−.

Now we are interested in

Mq(n) ≡ 〈enqun(X)〉, (17)

=
∫

dXρ(X)eq
∑n−1

k=0
u(T k(X)), (18)

=
∫

dX[Hequ(x)]nρ(X), (19)
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where ρ(X) denotes the natural invariant density and H denotes the Frobenius-Perron op-

erator HG(X) ≡ ∫
dY δ(X − T (Y ))G(Y )[11]. Let us introduce

Eα(X) ≡




1 if X ∈ Rα,

0 otherwise
(20)

and

Ej(X) ≡




1 if X ∈ Rj,

0 otherwise
(21)

(α = 0, 1, j = 0, 1, 2, . . .), then, in the present models, the linear space spanned by

{Eα(X)Ej(X)} is mapped to the linear space spanned by {Ej(X)} under the operation

of the Frobenius-Perron operator H and ρ(X), which is a fixed point of H, can be found in

the linear space spanned by {Ej(X)}. Moreover, if we are considering piecewise constant

u(X) in each Rα ∩Rj such that u(X) =
∑

α,j uα
j Eα(X)Ej(X), which is the case in Eqs. (16)

and (15), then the operation of Hequ(X) in the linear space spanned by {Ej(X)} is expressed

with an infinite dimensional matrix as follows:

Hequ(X)Ej(X) = Hequ(X)(E0(X) + E1(X))Ej(X) (22)

= H(equ0
j E0(X) + equ1

j E1(X))Ej(X) (23)

=
∞∑

i=0

(P 0
ije

qu0
j + P 1

ije
qu1

j )ei(X)
∫

dY Ej(Y ) (24)

with ei(X) ≡ Ei(X)/
∫

dY Ei(Y ) and

P 0
ij ≡ a(δi,0δj,0 + δi+1,j), (25)

P 1
ij ≡ a′δi−1,j (26)

for the model I and

P 0
ij ≡ b′−1biδj,0 + aδi+1,j, (27)

P 1
ij ≡ a′δi−1,j(1− δj,0) (28)

for the model II, where a′ ≡ 1 − a and b′ ≡ 1 − b. Thus, by introducing a matrix [Pq]ij ≡
P 0

ije
qu0

j + P 1
ije

qu1
j , we obtain

Mn(q) =
∫

dX
∞∑

i,j=0

[Pq
n]ijpjei(X) =

∞∑

i,j=0

[Pq
n]ijpj, (29)
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where pj ≡
∫

dXρ(X)Ej(X). Note that, at q = 0, [Pq]ij is identified as the transition

probability from the state j to the state i of an infinite Markov chain and pi, which satisfies

pi =
∑∞

j=0[P0]ijpj and
∑∞

i=0 pi = 1, is obtained as

pi = (a− a′)a−1(a′/a)i (30)

for the model I and

pi =





(a− a′)b′/(1− 2a′b′) if i = 0,

p0b(a
′ − ab)−1{(a′/a)i − bi} if i ≥ 1

(31)

for the model II. Note also that, for j > 0, in both models, [P0]ij = aδi+1,j + a′δi−1,j which

represents random walks as shown in Fig. 1 and [Pq]ij = aequ+δi+1,j + a′equ−δi−1,j with u(X)

of Eqs. (16) and (15).

By evaluating Eq. (29) for large n, we obtain φ(q) as Mn(q) ∼ enφ(q). Equation (29) is

rewritten as

Mn(q) =
∑

{i0,i1,···,in}
[Pq]inin−1 [Pq]in−1in−2 · · · [Pq]i1i0pi0 , (32)

where the summation is taken over all the possible paths {i0, i1, · · · , in} with length n of the

Markov chain. For a fixed m > 0, the possible paths are divided into two groups S(m)
n and

S
(m)
n according to whether all the i0, i1, · · · , in are less than m or not. The contribution from

the bounded paths S(m)
n is

M (m)
n (q) =

∑

{i0,i1,···,in}∈S
(m)
n

[Pq]inin−1 [Pq]in−1in−2 · · · [Pq]i1i0pi0 (33)

=
m−1∑

i,j=0

[(P (m)
q )n]ijpj ∼ (λ(m)

q )n, (34)

where P (m)
q denotes the m×m matrix defined by [P (m)

q ]ij = [Pq]ij (0 ≤ i, j < m) and λ(m)
q is

the largest real eigenvalue of P (m)
q . In another way, the possible paths are divided into two

groups S0
n and S0

n according to whether all the i0, i1, · · · , in are greater than 0 or not. If a

path is in S0
n, then the path is equivalent to a path of random walks as mentioned above.

The contribution from the random walk paths S0
n is denoted by

Zn(q) ≡ ∑

{i0,i1,···,in}∈S0
n

[Pq]inin−1 [Pq]in−1in−2 · · · [Pq]i1i0pi0 . (35)

It is apparent that S0
n∩S

(m)
n 6= ∅ for any m > 0. Since we can take an arbitrarily large value

of m, the paths which repeatedly visit the state 0 are considered to be included in S(m)
n . Thus
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the paths which are not included in both S(m)
n and S0

n and which we need to take into account

are the paths {i0, i1, · · · , in} such that {i0, i1, · · · , il} ∈ S
(m)
l and {il, il+1, · · · , in} ∈ S0

n−l+1

with a small l compared with n, so that the exponential dependence of Mn(q) on n is

obtained by evaluating the sum of M (m)
n (q) with m →∞ and Zn(q).

As shown in the appendix C, Zn(q) is evaluated as Zn(q) ∼ enq(u++u−)/2(λ′q)
n. Thus we

conclude that

eφ(q) = eq(u++u−)/2 max{λq, λ
′
q}, (36)

where λq denotes e−q(u++u−)/2λ(∞)
q .

As shown in the appendices A and B, λq is obtained as a function λ(η) of η ≡
eq(u++u−−2u0)/2 for the model I and as a function λ(η, z) of η and z ≡ e−q(u+−u−)/2 for

the model II. The minimum value of λ is 2
√

aa′ which corresponds to the band edge of the

continuous eigenvalue of e−q(u++u−)/2Pq and the first derivative of λ continuously vanishes

at η =
√

a/a′ and 2
√

aa′(1− bz−1
√

a/a′) = b′η−1 for the models I and II, respectively, where

the discrete real eigenvalue disappears. As shown in the appendix C, λ′q is obtained as a

function λ′(z) of z, which has the same minimum value 2
√

aa′ as that of λ. Note that λ and

λ′ dose not depend on b in the model I.

In Figs. 2 and 3, λ and λ′ are plotted against z and η for the models I and II. In Figs. 4

and 5, three phases D, R, and B introduced according to the relative magnitudes of λ and

λ′ are shown on the η-z plane: in the phase D the discrete eigenvalue is dominant, i.e.,

λ > λ′ > 2
√

a/a′, in the phase R the contribution from random walks is dominant, i.e.,

λ′ > λ > 2
√

a/a′, and in the phase B the band edge is dominant, i.e., λ′ = λ = 2
√

a/a′. By

comparing the magnitudes of λ and λ′, we obtain the boundary between the phases D and

R as

η = (a/a′)z−1 (z >
√

a/a′) (37)

and

η = (a/a′)z (z <
√

a′/a) (38)

for the model I and

η =
a′b′z

(a′z + az−1)(a′z − abz−1)
(z >

√
a/a′) (39)

and, if b < a′/a,

η =
a′b′

(a′ − ab)(az + a′z−1)
(z <

√
a′/a) (40)
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for the model II.

Let us fix the values of u0 and u±, then (ln η = q(u+ +u−−2u0)/2, ln z = −q(u+−u−)/2)

for −∞ < q < ∞ is a straight line passing through the origin on the ln η-ln z plane. By

Eq. (36), a change of phases along the line on the ln η-ln z plane brings about a singularity

in φ(q) at the corresponding value of q. At the boundary between D and R denoted by

a solid line in Figs. 4 and 5, u(q) = dφ(q)/dq exhibits a jump. In the phase C, u(q) is a

constant since du(q)/dq = 0 and, at its boundary denoted by a dashed line in Figs. 4 and 5,

the slope du(q)/dq of u(q) exhibits a jump. For example, in Fig. 6, u(q) and S(u) are plotted

for the three sets of values of u0 and u± expressed as u0 = cos ϕ and u+ = −u− = sin ϕ

with ϕ = 0.05π, 0.38π, and 0.7π corresponding to the three dotted lines in Fig. 5 (a).

Figures 6 (a) and (b) are for the dotted line 1, where u(q) has a plateau which corresponds

to a salient point of S(u). Figures 6 (c) and (d) are for the dotted line 2, where u(q) has a

plateau and a jump which correspond to a salient point of S(u) and a linear slope of S(u),

respectively. Figures 6 (e) and (f) are for the dotted line 3, where u(q) has two jumps which

correspond to two linear slopes in S(u).

In the previous paper[8], the model II with u0 = 1 and u+ = u− = 0 is considered,

where only the singularity at the boundary between D and B is observed or no singularity

is observed according to whether b < a′/a or not. Note that, as it is understood from Figs. 4

and 5, if ln z ≡ 0, i.e., u+ = u−, there appears only the singularity at the boundary between

D and B which implies a constant value of u(q) over a semi-infinite interval of q. Here, for

systems exhibiting on-off intermittency, we conjecture that if the observed quantity u(X) is

independent of the direction of motion from or to the invariant subspace as for the present

models with u+ = u−, then the only possible singularity in u(q) due to on-off intermittency

is a plateau over a semi-infinite interval of q. Indeed, this is also supported by the result

on the multiplicative noise model of on-off intermittency[5], where u(X) = r2 and r4 are

considered with r corresponding to the distance from the invariant subspace.

Now let us consider the fluctuation of transverse expansion rate ln |∂G/∂y|, i.e., u0 = 0

and u+ = −u− = ln b−1 for the model I and u0 = ln b′−1 and u+ = −u− = ln b−1 for the model

II. In the case of the model I, by considering the vertical line (ln η = 0, ln z = q ln b) with

−∞ < q < ∞ in Fig. 4, it is confirmed that there are two jumps in u(q) and corresponding

two linear slopes in S(u) for a > a0 = 1/2 + 0. At the onset of on-off intermittency a = a0,

there appears no singularity since Fig. 4 converges to Fig. 7 (a) in the limit of a → a0. On
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the other hand, in the case of the model II, a variety of behavior as in Fig. 6 is observed

depending on the values of a and b as shown in Fig. 8, where “c” denotes a plateau in u(q),

“d” denotes a jump in u(q), and “c-d” and “d-d” denote their combinations. In the limit of

a → a0, Fig. 5 (b) converges to Fig. 7 (b) and thus u(q) exhibits a discontinuous change of

its slope du(q)/dq at q = 0 as shown in Fig. 9. Corresponding to the singularity in u(q) at

q = 0, the curvature of S(u) shows a jump at the minimum of S(u). Moreover, if b > 1/2, a

jump in u(q) and a linear slope in S(u) are also observed at a = a0. In this way, at the onset

of on-off intermittency, the degree of singularity is weakened but it becomes more probable

in the sense that it appears at the minimum of S(u). This singularity at the onset of on-off

intermittency can be formulated by considering conditional variances of nun(X). Let us

introduce the conditional variances σ+(nun(X)) and σ−(nun(X)) as

σ+(G(X)) ≡ 〈σ(G(X)− 〈G(X)〉)〉 (41)

and σ−(G(X)) ≡ σ+(−G(X)) with

σ(x) ≡




x2 if x > 0,

0 otherwise.
(42)

For n À 1, Eq. (11) leads to

σ+(nuu(X)) ∼
∫ umax
ū (nu)2e−nS(u)du∫ umax

umin
e−nS(u)du

(43)

∼ nκ
−3/2
+ /(κ

−1/2
− + κ

−1/2
+ ) (44)

and

σ−(nuu(X)) ∼ nκ
−3/2
− /(κ

−1/2
− + κ

−1/2
+ ), (45)

where, umin ≡ u(q = −∞), umax ≡ u(q = ∞), ū ≡ u(q = 0) = 〈u(X)〉 gives the minimum

value 0 of S(u), κ± ≡ d2S(ū ± 0)/du2, and S(u) is expanded around ū. Thus, if κ− 6= κ+,

we have different limiting values of σ+(nun(X))/n and σ−(nun(X))/n.

In Fig. 10, σ+(nun(X)) and σ−(nun(X)) are plotted for the coupled logistic map

xn+1 = f(xn) +
1− e−α

2
(f(yn)− f(xn)) (46)

yn+1 = f(yn) +
1− e−α

2
(f(xn)− f(yn)) (47)

with f(x) ≡ 3.8x(1 − x), where u(X) ≡ (x + y)/2 is observed and the parameter value is

set in two ways nearly at the onset of on-off intermittency α = 0.4321 and out of on-off
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intermittency α = 0.1. Figure 10 confirms the singularity κ+ 6= κ− at the onset of on-

off intermittency. As in Figs. 4 and 5, on the ln η-ln z plane, the origin ln η = ln z = 0

which corresponds to q = 0 and the minimum of S(u) is always in D except at the onset

of on-off intermittency indicating that the singularities around q = 0 and the minimum of

S(u) can appear only at the onset of on-off intermittency. Note that as it is understood

from Fig. 7 it is possible to choose an observed quantity u(X) in such a way that, at the

onset of on-off intermittency, the corresponding line on the ln η-ln z plane lies in R except

its origin and no singularity in u(q) appears. With such a choice of u(X), near the onset of

on-off intermittency, there appear two jumps in u(q) which disappear at the onset of on-off

intermittency.

IV. CONCLUDING REMARKS

Singularities in the fluctuation of on-off intermittency are investigated on two-dimensional

piecewise linear maps. It is shown that there appear three phases of motion and by the

crossover between the phases there appear singularities in φ(q) and correspondingly in u(q)

and S(u). The q-weighted average u(q) exhibits two types of singularities a jump and a

plateau. As the system approaches the onset of on-off intermittency, the width of plateau

in u(q) shrinks to zero, if it exists, and its position converges to at q = 0. In this way, at

the onset of on-off intermittency, a jump in the slope du(q)/dq of u(q) at q = 0 appears.

The singularity at the onset of on-off intermittency is also confirmed for the coupled logistic

map by introducing conditional variances.

In nonhyperbolic systems with homoclinic tangencies, the fluctuation of expansion rate

exhibits a singularity which appears as a linear slope in S(u)[12]. The singularities observed

here are also related to nonhyperbolicity. In the models I and II, the tangent space at X is

expressed as a direct sum Ex(X) ⊕ Ey(X) of the one-dimensional linear subspaces Ex(X)

and Ey(X) along x and y directions, respectively, each of which is invariant under the

tangent map, i.e., DT (Ex(X)) = Ex(T (X)) and DT (Ey(X)) = Ey(T (X)). The stability in

Ey(X) changes between stable and unstable depending on X within the attractor while it is

always unstable in Ex(X), i.e., the system posses nonhyperbolicity called unstable dimension

variability[18]. In contrast with unstable dimension variability, homoclinic tangencies are

points where the unstable and stable tangent spaces degenerate such that the direct sum
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of them does not coincide with the full tangent space. In the present systems, unstable

dimension variability is due to the fact that there are infinitely many paths each of which

has infinite length and negative transverse Lyapunov exponent as well as infinitely many

paths with positive Lyapunov exponents. Indeed, if the Markov chain shown in Fig. 1

is truncated into a finite Markov chain, then all the paths with infinite length have only

positive transverse Lyapunov exponents and moreover only the discrete eigenvalues of Pq

are possible, which implies that no singularity appears in φ(q). In this sense, the singularities

observed here are considered to be due to nonhyperbolicity of on-off intermittency.

We conjecture that, for systems exhibiting on-off intermittency, the fluctuation has singu-

larities due to nonhyperbolicity of unstable dimension variability. Finally it should be noted

that long-term numerical calculations on systems exhibiting on-off intermittency may require

much care due to unstable dimension variability which implies a breakdown of shadowing[19].

Both numerical and theoretical investigations on general systems are the future works.
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APPENDIX A: DISCRETE EIGENVALUES

In this appendix, the largest discrete eigenvalue of e−q(u++u−)/2Pq is considered.

For the model I, the truncated m×m matrix P (m)
q reads

P (m)
q =




aequ0 aequ+

a′equ− 0 aequ+ 0

a′equ− 0
. . .

a′equ− . . . aequ+

0
. . . 0 aequ+

a′equ− 0




(A1)

= eq(u++u−)/2




aη−1 az−1

a′z 0 az−1 0

a′z 0
. . .

a′z
. . . az−1

0
. . . 0 az−1

a′z 0




, (A2)

where z ≡ e−q(u+−u−)/2 and η ≡ eq(u++u−−2u0)/2. Let us find λ and v satisfying tvP (m)
q =

eq(u++u−)/2λtv, i.e.,

λv1 = aη−1v1 + a′zv2, (A3)

λvi = az−1vi−1 + a′zvi+1, i = 2, 3, · · · , m− 1, (A4)

λvm = az−1vm−1. (A5)

With

µ± ≡ λ±√λ2 − 4aa′

2a′
(A6)

and constants c+ and c−, (A4) can be expressed as

vi = (c+µi−1
+ + c−µi−1

− )z−i. (A7)

With (A7), (A3) and (A5) become

c+(aη−1 + a′µ+ − λ) + c−(aη−1 + a′µ− − λ) = 0 (A8)
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and

c+(a− λµ+) + c−(µ−/µ+)m−2(a− λµ−) = 0, (A9)

respectively. Thus,

c−(µ−/µ+)m−2(a− λµ−)(aη−1 + a′µ+ − λ)

= c−(a− λµ+)(aη−1 + a′µ− − λ). (A10)

If λ > 2
√

aa′, then µ−/µ+ < 1 and with the limit of m →∞, Eq. (A10) leads to

λ = aη−1 + a′µ−, (A11)

where the non-physical solution a− λµ+ = 0, which means c− = 0, is abandoned. Eq. (A6)

is equivalent to

λ = aµ−1
− + a′µ−, µ− <

√
a/a′ (A12)

and, together with Eq. (A11), this gives

µ− = η (A13)

if η <
√

a/a′. Thus, if η <
√

a/a′,

λ = aη−1 + a′η, (A14)

is the largest real eigenvalue of e−q(u++u−)/2Pq for the model I. If η <
√

a/a′ is not satisfied,

there is no eigenvalue of e−q(u++u−)/2Pq greater than 2
√

aa′.

For the model II, the truncated m×m matrix P (m)
q reads

P (m)
q =




b′equ0 aequ+

b′bequ0 0 aequ+ 0

b′b2equ0 a′equ− 0
. . .

b′b3equ0 a′equ− . . . aequ+

... 0
. . . 0 aequ+

b′bm−1equ0 a′equ− 0




(A15)

= eq(u++u−)/2




b′η−1 az−1

b′bη−1 az−1 0

b′b2η−1 a′z 0
. . .

b′b3η−1 a′z
. . . az−1

... 0
. . . 0 az−1

b′bm−1η−1 a′z 0




. (A16)
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In a similar way as for the model I, let us find λ and v satisfying tvP (m)
q = eq(u++u−)/2λtv,

then Eq. (A3) is substituted by

λv1 = b′η−1
m∑

i=1

bi−1vi (A17)

and Eq. (A8) is substituted by

c+(b′η−1 1− (µ+bz−1)m

1− µ+bz−1
− λ) + c−(b′η−1 1− (µ−bz−1)m

1− µ−bz−1
− λ) = 0. (A18)

Thus, we obtain

c−(µ−/µ+)m−2(a− λµ−)(b′η−1 1− (µ+bz−1)m

1− µ+bz−1
− λ)

= c−(a− λµ+)(b′η−1 1− (µ−bz−1)m

1− µ−bz−1
− λ). (A19)

If µ− is real and µ−bz−1 < 1, then, with the limit of m →∞, Eq. (A19) leads to

λ = b′η−1/(1− µ−bz−1), (A20)

where the non-physical solution a−λµ+ = 0, which means c− = 0, is abandoned. Eq. (A20)

together with Eq. (A12) determines the largest real eigenvalue of e−q(u++u−)/2Pq for each q,

which exists if

2
√

aa′(1− bz−1
√

a/a′) < b′η−1. (A21)

If the condition (A21) is not satisfied, then there is no eigenvalue of e−q(u++u−)/2Pq greater

than 2
√

aa′.

APPENDIX B: CONTINUOUS EIGENVALUES

In this appendix, the continuous eigenvalues of e−q(u++u−)/2Pq is considered.

If −2
√

aa′ < λ < 2
√

aa′, with a real θ ∈ [0, π], µ± and λ can be expressed as µ± =
√

a/a′e±iθ and λ = 2
√

aa′ cos θ and, without loss of generality, we can set c± = e±iψ with a

real ψ. Eq. (A5) leads to

Re[eiψeimθ] = 0 (B1)

and it is satisfied with

ψ + mθ =
π

2
(mod π). (B2)
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Note that if θ = 0, then µ+ = µ−, ψ = π/2 (mod π) by Eq. (B2) with ϕ(0) = π, and

c+ + c− = 0 which means vm = 0, thus θ = 0 is not allowed. In the same reason, θ = π is

also not allowed. Eqs. (A3) and (A17) are also converted to the form of Re[eiψg(θ)] = 0,

where

g(θ) =
√

aη−1 −
√

a′e−iθ (B3)

for the model I and

g(θ) = b′η−1
1− (bz−1

√
a/a′)meimθ

1− bz−1
√

a/a′eiθ
− 2

√
aa′ cos θ (B4)

for the model II, and, by eliminating ψ by Eq. (B2), it leads to

γ(θ) = mθ (mod π), (B5)

where γ(θ) ≡ arg{g(θ)}. For the model I, γ(θ) is continuous and




0 = γ(0) = γ(π) ≤ γ(θ) < π/2 if η ≤
√

a/a′,

0 = γ(π) ≤ γ(θ) ≤ γ(0) = π otherwise.
(B6)

Thus, for large m, there are m−1 or m almost equally spaced solutions of θ over the interval

(0, π). In the limit of m → ∞, the solutions θ form an interval [0, π] and we have a band

[−2
√

aa′, 2
√

aa′] of continuous eigenvalues of e−q(u++u−)/2Pq. For the model II, we consider

the case bz−1
√

a/a′ < 1, otherwise the condition Eq. (A21) for the existence of the eigenvalue

of e−q(u++u−)/2Pq greater than 2
√

aa′ is automatically satisfied. For large m, γ(θ), whose

dependence on m can be neglected, is continuous and bounded, since g(θ) converges to

b′η−1

1− bz−1
√

a/a′eiθ
− 2

√
aa′ cos θ (B7)

with m →∞. And γ(π) = 0 and γ(0) = π or 0 according to whether g(0) ≤ 0 or not, thus,

similarly as for the model I, we also have a band [−2
√

aa′, 2
√

aa′] of continuous eigenvalues

of e−q(u++u−)/2Pq for the model II.

APPENDIX C: EVALUATION OF Zn(q)

Each element of S0
n is a path of random walks with length n which never visit the state

0. Let us define

K(l, t) ≡




tC(l+t)/2 if l = −t,−t + 2, · · · , t− 2, t,

0 otherwise
(C1)
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and let i, j > 0. Then the number of the possible paths of length n from i to j is K(i −
j, n)−K(i + j, n) by the reflection principle[20]. Our purpose is to evaluate

Zn(q) =
∞∑

i=1

pi

∞∑

j=1

(a′equ−)m(aequ+)n−m{K(i− j, n)−K(i + j, n)}, (C2)

where m ≡ (n + j − i)/2 is the number of steps toward the positive direction. With

v ≡
√

a′/ae−q(u+−u−)/2, Eq. (C2) reads

Zn(q) = enq(u++u−)/2(aa′)n/2
∞∑

i=1

pi

∞∑

j=1

vj−i{K(i− j, n)−K(i + j, n)}. (C3)

Note that pi ∝ (a′/a)i and ∝ (a′−ab)−1{(a′/a)i−bi} for the models I and II, respectively,

and let us evaluate

G(v, w, n) ≡
∞∑

i=1

∞∑

j=1

wivj−i{K(i− j, n)−K(i + j, n)} (C4)

=
n∑

i=1

wi
t∑

j=1−i

vlK(j, n) +
∞∑

i=n+1

wi
n∑

j=−n

vjK(j, n)−
n−1∑

i=1

(w/v2)i
n∑

j=i+1

vjK(j, n), (C5)

with 0 < w < 1. The second term of Eq. (C5) is

wn+1(1− w)−1
n∑

m=0

v2m−n
nCm = wn+1(1− w)−1(v−1 + v)n. (C6)

By using Stirling’s formula, the first term of Eq. (C5) is approximated by

n−1/2
∫ 1

0
dr0

∫ 1

−r0

drwnr0vnr exp{−n(
1 + r

2
ln

1 + r

2
+

1− r

2
ln

1− r

2
)}. (C7)

Since w < 1, the maximum of the integrand is achieved at a point on {(r0, r)|r0 = 0, 0 ≤
r ≤ 1} ∪ {(r0, r)|0 ≤ r0 = −r ≤ 1} and thus Eq. (C7) is evaluated as





(v−1 + v)n if v > 1,

2n if w ≤ v ≤ 1,

(v−1w + vw−1)n if v < w.

(C8)

Similarly, the third term of Eq. (C5) is evaluated and its contribution can be neglected.

Since w < 1, Eqs. (C6) and (C8) lead to

G(v, w, n) ∼





(v−1 + v)n if v > 1,

2n if w ≤ v ≤ 1,

(v−1w + vw−1)n if v < w.

(C9)
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Thus, Eqs. (C3) and (C9) lead to

lim
n→∞Zn(q)1/n =





aequ+ + a′equ− if aequ+ < a′equ− ,

awequ+ + a′w−1equ− if awequ+ > a′w−1equ− ,

2
√

aa′eq(u++u−)/2 otherwise,

(C10)

where w = a′/a and max{a′/a, b} for the models I and II, respectively. With z = e−q(u+−u−)/2

and

λ′q ≡





az−1 + a′z if az−1 < a′z,

awz−1 + a′w−1z if awz−1 > a′w−1z,

2
√

aa′ otherwise,

(C11)

Eq. (C10) is expressed as Zn(q) ∼ enq(u++u−)/2(λ′q)
n. Note that the minimum value 2

√
aa′ of

λ′q coincides with the band edge of the continuous eigenvalue of e−q(u++u−)/2Pq and the first

derivative of λ′q continuously vanishes at z = w
√

a/a′ and
√

a/a′ and equals to 0 between

them.
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O.E. Rössler, and R. Stoop, Encounter with Chaos (Springer Verlag, Berlin, 1992), Sec. 4.3;

T. Horita and H. Mori, Prog. Theor. Phys. 91, 677 (1994);

[13] H. Suetani and T. Horita, Chaos 11, 795 (2001).

[14] G. Radons, Phys. Rep. 290, 67 (1997); Phys. Rev. Lett. 75, 4719 (1995).

[15] J. Milnor, Commun. Math. Phys. 99, 177 (1985).

[16] See, e.g., C. Beck and F. Schlögl, p.153 in Ref. [10].
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FIG. 1: Graphs of possible symbol sequence for the models (a) I and (b) II.
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FIG. 2: Functions λ and λ′ of η and z for the model I with a = 0.6. Both λ and λ′ reach the same

minimum value 2
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and b = 0.6. Both λ and λ′ reach the same minimum value 2
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FIG. 4: Phase diagram on the η-z plane for the model I with a = 0.6 corresponding to Fig. 2. The

symbols D, R, and B denote the discrete eigenvalue, the contribution from random walks, and the

band edge of continuous eigenvalue, respectively.
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FIG. 5: Phase diagrams on the η-z plane for the models II with (a) a = 0.6 and b = 0.4 and

(b) a = 0.7 and b = 0.6 corresponding to Fig. 3. The symbols D, R, and B denote the discrete

eigenvalue, the contribution from random walks, and the band edge of continuous eigenvalue,

respectively. If b > a′/a, R dose not exist for z < 1. The dotted lines 1, 2, and 3 in (a) show

η = e−q cos ϕ and z = e−q sin ϕ for −∞ < q < ∞ with ϕ = 0.05π, 0.38π, and 0.7π, respectively.
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FIG. 6: The q-weighted average u(q) and the fluctuation spectrum S(u) for the model II with

a = 0.6 and b = 0.4. Corresponding to the three dotted lines 1, 2, and 3 in Fig. 5 (a), the values

of u0 = cosϕ and u+ = −u− = sinϕ are set in three ways: ϕ = 0.05π for (a) and (b), 0.38π for (c)

and (d), and 0.7π for (e) and (f). A plateau, a plateau and a jump, and two jumps are observed

in (a), (c), and (e), respectively.
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sion rate for the model II. The symbols c and d denote a plateau and a jump in u(q), respectively.

The onset of on-off intermittency is at a = a0 = 1/2 + 0.
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FIG. 9: The q-weighted average u(q) and the fluctuation spectrum S(u) of the transverse expansion

rate for the model II with b = (a) 0.4 and (b) 0.6 at the onset of on-off intermittency.
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FIG. 10: Conditional variances σ+(nun(X)) and σ−(nun(X)) for the coupled logistic map with

α = 0.432 (upper two lines) and 0.1 (lower two lines). For α = 0.432, the difference of the slopes of

σ+(nun(X)) and σ−(nun(X)) confirms the discontinuity of the curvature of S(u) at the minimum

at the onset of on-off intermittency. The average is taken along an orbit of length 107.
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