
Chapter 1

Introduction

First let’s overview the topics to be discussed in the following chapters. An original

textbook is Electronic Theory of Solids, Chapter 4 in Fundamentals of Condensed

Matter Physics II written in Japanese by Toshinosuke Muto (Kyoritsu Shuppan,

1957). The book is now out of print.

We will see some fundamentals of the electron theory of solids in this
book. Solid is one of the four states of matter: solid, liquid, gas, and plasma.
It has a rigid structure in contrast to the other states, because atoms, ions
or molecules bond together in a solid. Only a few grams of a solid consists
of a huge number, about 1023, of atoms. You may be able to calculate how
many atoms are in a solid if its weight and atomic composition are given.
We will focus on crystalline solids or crystals for simplicity. A basic building
blocks made up of atoms or molecules are regularly repeated throughout a
crystal. Owing to the repetition in structure, we do not have to deal with
the whole atoms in a crystal, but it is enough to consider the atoms only
within a single building block in many cases.

Each elemental solid, which consists of a single element, or solid com-
pound has its intrinsic properties. They are used properly for a wide variety
of purposes by taking account of their physical properties such as electrical
conductivity, heat conductivity, magnetic property, optical properties, hard-
ness and so on. Most physical properties are closely related to the behavior
of so-called valence electrons.

Consider one of the valence electrons in a solid. We here distinguish
the valence electrons from the rest of an atom or the ion core: nucleus and
core electrons. The valence electron interacts with ion cores and the other
valence electrons. Both ion cores and valence electrons in a solid run up to
about 1023. There are the electrostatic interaction described by Coulomb’s
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law, the magnetic interaction due to spin and orbital magnetic moments,
and so on. Because the magnetic interaction is weak in general, though not
always, we will consider only the electrostatic interaction. The state of the
valence electrons is then governed by the Schrödinger equation for a many-
body system consisting of the valence electrons and the ion cores with the
electrostatic interaction. It is impossible to solve such an equation for an
enormous number of interacting particles without any approximation.

(i) Born-Oppenheimer approximation to separate the motion of the
valence electrons and the motion of the ion cores

If one assumes that the motion of ion cores is much slower than the
motion of valence electrons and that the interaction between the motion of
ion cores and the motion of valence electrons is weak, one can solve the
electronic motion of equation with the ion cores fixed in a certain configu-
ration. We will see this in Ch. 2. It is, however, still impossible to solve the
Schrödinger equation for too many valence electrons.

(ii) one electron approximation to reduce the many-electron equation to
a set of one-electron equations

Clamp the ion cores at the lattice points of the crystal and use an approx-
imate potential energy that takes the average interaction of the electrons
into account. Take the effect of the other electrons into account through
the interaction field the valence electron experiences in the averaged charge
density of all the other electrons.

Thus we then obtain the one-electron potential depending only on the co-
ordinate of the electron of interest and it determines the one-electron wave
function orbital. According to the Pauli’s principle the resultant orbitals
are used to construct the many-electron wave function, which is called as
Slater determinant. Chapter 3 is devoted to the one-electron equation which
governs the one-electron wave function and chapter 4 to validity of the inde-
pendent electron approximation. Because the equation for a valence orbital
includes all the other occupied valence orbitals, one should start from an ap-
propriate set of wave functions and iterate until self consistency is achieved.
1.

Without such an elaborate task one can tell some properties of the one-
electron state much easily with the aid of experimental data if one assumes
that the one-electron potential has the same translational symmetry. The

1This calculation can tell the valence electronic state without any resort to experiments.
Thus it is called the empirical or first principle calculation.
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one-electron wave function in a periodic potential is called as the Bloch
function. The behavior of the Bloch function is treated by the electronic
band-structure theory. The properties of the Bloch function will be seen in
Ch. 5. Some simple band theories follows.

We note here that the above procedure is not always appropriate to all
the crystal. The adiabatic approximation is valid for the ground state of the
insulators whereas the assumption does not hold for metals or the excited
states of a solid. In such cases one needs to consider the electron-phonon
interaction.

The independent electron approximation also neglect correlation among
the electrons; the probability of finding an electron at certain position in
space depends on the positions of the other electrons. for example

• two electrons with parallel spins

The two electrons tend to move away from one another according to
the Pauli’s principle. This is called as exchange correlation and plays
an important role in evaluating the cohesive energy or in ferromag-
netism The effect is approximately incorporated by using the Slater
determinant.

• two electrons with anti-parallel spins

The two electrons also tend to repel each other according to Coulomb’s
law, which also holds for the case (i). As is shown in Ch. 3, the Slater
determinant gives a good approximation of many-electron wave func-
tion in the limit of weak interaction. Considering the electrostatic
interaction between two electrons many-electron state is no longer ex-
pressed by a single Slater determinant and is a linear combination
of Slater determinant for possible electronic configurations, so-called
configuration interaction, CI. This is reminiscent of the perturbation
theory in quantum mechanics, where the perturbation, Coulomb in-
teraction between the two electrons in this case, results in a linear
combination of the unperturbed wave functions, Slater determinants.

It depends on each material of interest how important is the effect of
electron correlation. For example, many 3d transition-metal compounds and
lanthanoide compounds are known as strongly correlated electron system. In
Ch. 4 we consider the electron correlation from the beginning and show the
validity of the one electron approximation without resorting to any spatial
localization of a particular orbital.


